2021

COMPUTER SCIENCE — HONOURS

Paper : CC-1 (Digital Logic)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions of the following:

 2×5

- (a) State De Morgan's theorems.
- (b) Convert $(3EA.1D)_{16} = (?)_2 = (?)_8$.
- (c) Add $(11101.101)_2 + (1001.11)_2$ and $(6D.C)_{16} + (3B.2)_{16}$.
- (d) Design EX-OR gate by NAND gates only.
- (e) Subtract $(1011)_2 (1101)_2$ using 2's complement.
- (f) Which type of topology has been adopted to overcome race around condition? Explain.
- (g) What are the differences between multiplexer and demultiplexer?
- (h) How many flip-flops and other logic gates are required to design an UP decade counter?
- 2. (a) Simplify the logic expression $F = \sum m(0, 2, 5, 7, 8, 10, 13, 15)$ by K-map method. Design the circuit following simplified expression. Draw the truth table.
 - (b) Identify the maxterms from the above mentioned logic expression. Simplify it by K-map method.
- $\mathbf{3.}$ (a) Implement $Y_{difference}$ output of a 3-bit full subtractor by the logic gates. Draw the truth table.
 - (b) Implement Y_{carry} output of a 3-bit full adder by NAND gates only. 6+4
- **4.** (a) Implement $Y = \sum m(0, 4, 5, 6, 9, 10, 13, 14)$ by 8:1 multiplexer. Draw the truth table.
 - (b) Implement Y_{sum} output of a half adder by demultiplexer. 7+3
- 5. (a) Design a 2-bit multiplier by multiplying $(10)_2$ and $(11)_2$.
 - (b) Draw the necessary truth table.

8+2

- 6. (a) What is Set-Reset flip-flop? Design it by NAND gates only and explain. Draw the truth table.
 - (b) What is race around condition?
 - (c) How can the Set-Reset flip-flop be converted into D-flip-flop? Draw the truth table of D-flip-flop. 5+2+3
- 7. (a) Design an asynchronous UP decade counter. Explain its function.
 - (b) Design a MOD-5 counter showing all the count sequence.

6+4